Celebration 2 Presentation

Selina Gu, Henry Yao, Stephanie Yao

Ross Mathematics Program

October 11, 2023

Table of Contents

- Definition of cyclic groups and generators
- 2 Proof of \mathbb{U}_p is cyclic
- 3 Proof of \mathbb{U}_{p^k} is cyclic
 - Inductive Case: \mathbb{U}_{p^k}
 - Base Case: \mathbb{U}_{p^2}
- **4** Proof of \mathbb{U}_{2p^k} is cyclic for odd primes p

Is it possible to get all the other elements in a group from one specific element? And how?

example: (\mathbb{U}_5,\cdot) is a group try 2 and \cdot $2^1=2$ $2^2=4$ $2^3=3$ $2^4=1$ so 2 is such a specific element in fact, 3 is also such an element

Definition of cyclic groups and generators

Definition

A group is **cyclic** iff there is some element $g \in G$ such that

$$G = \{g^n, n \in \mathbb{Z}\}$$

We call g the **generator** of G.

Example

 \mathbb{U}_2 1 is a generator

 \mathbb{U}_3 2 is a generator

 \mathbb{U}_4 3 is a generator

 \mathbb{U}_5 2 is a generator

 \mathbb{U}_6 5 is a generator

 \mathbb{U}_7 3 and 5 are generators

 \mathbb{U}_8 no generator

 \mathbb{U}_9 2 is a generator

Conjecture

 \mathbb{U}_p is always cyclic.

 \mathbb{U}_p is cyclic \Leftarrow find a generator g

infinite powers of g and finite elements \Rightarrow the powers of g must repeat

Definition of ord

```
\operatorname{ord}_{\mathfrak{o}}(g) = \operatorname{minimal length} \text{ of the period}
example: in \mathbb{U}_5
ord_5(1) = 1
ord_5(2) = 4
some properties of ord:
\rho^{\operatorname{ord}_p(g)} = 1
\operatorname{ord}_{p}(g) is the smallest x such that g^{x} = 1
if g^y = 1 then \operatorname{ord}_p(g) \mid y
the ord of any element in \mathbb{U}_p are divisors of p-1
if \operatorname{ord}_p(a) = r and \operatorname{ord}_p(b) = s, then \operatorname{ord}(ab) = rs when \gcd(r, s) = 1.
```

WTS: $\operatorname{ord}_p(g) = p - 1$

```
Tthink about the properties of ord: the 4th property (let g be the product of some integers and also factorize p-1) let p-1=q_1^{e_1}q_2^{e_2}q_3^{e_3}\cdots q_n^{e_n} now, we need to find a_1,a_2,\cdots,a_n such that \operatorname{ord}_p a_1=q_1^{e_1}, \operatorname{ord}_p a_2=q_2^{e_2}, \cdots, \operatorname{ord}_p a_n=q_n^{e_n} then g=a_1a_2\ldots a_n stuck
```

go back to the beginning

```
we notice \operatorname{ord}_p(g) = p-1

What's related to p-1? FLT!

FLT: If gcd(x,p) = 1, then x^{p-1} \equiv 1 \mod p

in \mathbb{U}_p, all the elements are coprime to p

so m \in \mathbb{U}_p, m^{p-1} \equiv 1 \mod p so there are p-1 solutions

in \mathbb{Z}, if we have n solutions x_1, x_2, \ldots, x_n to x^k = 1, we can write x^k - 1 as (x - x_1)(x - x_2) \cdots (x - x_n)

check: in \mathbb{U}_p, the same

so x^{p-1} - 1 = (x-1)(x-2) \cdots (x-(p-1))
```

```
recall: p-1=q_1^{e_1}q_2^{e_2}q_3^{e_3}\cdots q_n^{e_n}
we know q_i^{e_i} |p-1
so x^{q_i^{e_i}} - 1 | x^{p-1} - 1
so x^{q_i^{e_i}}-1 can be written as (x-c_1)(x-c_2)\cdots(x-c_{q_i^{e_i}})
(c_1, c_2, \cdots, c_{a_i^{e_i}} \in \mathbb{U}_p)
\operatorname{ord}_{n}c_{i}|q_{i}^{e_{i}}
 we want | here to be =, which means we need to rule out \operatorname{ord}_{p}c_{i} < q_{i}^{e_{i}}
 so find a solution to x_i^{q_i^{e_i}} \equiv 1 \mod pbutnot solution stox_i^{q_i^{e_i-1}} \equiv 1 \mod pbutnot solution stox_i^{q_i^{e_i-1}}
 p(mustexists)
then \operatorname{ord}_{n}c_{i}\nmid q_{i}^{e_{i}-1}
so \operatorname{ord}_{n}c_{i}=q_{i}^{e_{i}}
```

Conclusion

```
Factorization of p-1 FLT factorization of x^{p-1}-1 factorization of x^{q_i}-1 find a solution a_i to x^{q_i^{e_i}}=1 \mod p \operatorname{pbutnotsolutionstox}^{q_i^{e_i-1}}\equiv 1 \mod p \operatorname{ord}_p c_j=q_i^{e_i} g=a_1a_2\dots a_n \mathbb{U}_p is cyclic
```

Conjecture

If \mathbb{U}_{p^k} is cyclic, then $\mathbb{U}_{p^{k+1}}$ is also cyclic.

Conjecture

If \mathbb{U}_{p^k} is cyclic, then $\mathbb{U}_{p^{k+1}}$ is also cyclic.

Lemma

If $a \equiv 1 \pmod{p^{k+1}}$, then $a \equiv 1 \pmod{p^k}$.

Proof Outline:

• Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .

- Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .
- 2 Let $\operatorname{ord}_{p^k}(g) = d$, then $\varphi(p^{k-1}) \mid d \mid \varphi(p^k)$.

- **9** Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .
- 2 Let $\operatorname{ord}_{p^k}(g) = d$, then $\varphi(p^{k-1}) \mid d \mid \varphi(p^k)$.
- **3** If $d = \varphi(p^k)$, then we are done.

- **9** Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .
- 2 Let $\operatorname{ord}_{p^k}(g) = d$, then $\varphi(p^{k-1}) \mid d \mid \varphi(p^k)$.
- 3 If $d = \varphi(p^k)$, then we are done.
- **1** If $d = \varphi(p^{k-1})$, then find a $n \in \mathbb{Z}_p$ with $\operatorname{ord}_{p^k}(g + np^{k-1}) = \varphi(p^k)$.

- Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .
- 2 Let $\operatorname{ord}_{p^k}(g) = d$, then $\varphi(p^{k-1}) \mid d \mid \varphi(p^k)$.
- **3** If $d = \varphi(p^k)$, then we are done.
- **1** If $d = \varphi(p^{k-1})$, then find a $n \in \mathbb{Z}_p$ with $\operatorname{ord}_{p^k}(g + np^{k-1}) = \varphi(p^k)$.
- **1** Use Euler's Totient Theorem and Binomial expansion to get $g^{\varphi(p^{k-1})} \equiv 1 + np^{k-1} \pmod{p^k}$

Graph

Figure: The graph of the function $k=2+\frac{2}{a-1}$, so for k=3, it can divide all $(p^{k-2})^a$ when $a\geq 3$.

◆ロト ◆御 ▶ ◆ き ▶ ◆ き * りへ○

- Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .
- 2 Let $\operatorname{ord}_{p^k}(g) = d$, then $\varphi(p^{k-1}) \mid d \mid \varphi(p^k)$.
- **3** If $d = \varphi(p^k)$, then we are done.
- **1** If $d = \varphi(p^{k-1})$, then find a $n \in \mathbb{Z}_p$ with $\operatorname{ord}_{p^k}(g + np^{k-1}) = \varphi(p^k)$.
- Use Euler's Totient Theorem and Binomial expansion to get $g^{\varphi(p^{k-1})} \equiv 1 + np^{k-1} \pmod{p^k}$ (true for k > 2.)

- Suppose g is a generator in $\mathbb{U}_{p^{k-1}}$, we claim that g is also a generator in \mathbb{U}_{p^k} .
- 2 Let $\operatorname{ord}_{p^k}(g) = d$, then $\varphi(p^{k-1}) \mid d \mid \varphi(p^k)$.
- 3 If $d = \varphi(p^k)$, then we are done.
- **1** If $d = \varphi(p^{k-1})$, then find a $n \in \mathbb{Z}_p$ with $\operatorname{ord}_{p^k}(g + np^{k-1}) = \varphi(p^k)$.
- Use Euler's Totient Theorem and Binomial expansion to get $g^{\varphi(p^{k-1})} \equiv 1 + np^{k-1} \pmod{p^k}$ (true for k > 2.)
- **o** Contradiction got from $p^k \nmid np^{k-1}$, $g^{\varphi(p^{k-1})} \not\equiv 1 \pmod{p^k}$.

Conjecture

If \mathbb{U}_p is cyclic, then \mathbb{U}_{p^2} is also cyclic.

Lemma

$$\operatorname{ord}_{p^2}(1+p)=p$$

Conjecture

If \mathbb{U}_p is cyclic, then \mathbb{U}_{p^2} is also cyclic.

Lemma

$$\operatorname{ord}_{p^2}(1+p)=p$$

Conjecture

If \mathbb{U}_p is cyclic, then \mathbb{U}_{p^2} is also cyclic.

Lemma

$$\operatorname{ord}_{p^2}(1+p)=p$$

Proof Outline:

• Use binomial expansion, $(1+p)^p \equiv 1 \pmod{p^2}$.

Conjecture

If \mathbb{U}_p is cyclic, then \mathbb{U}_{p^2} is also cyclic.

Lemma

$$\operatorname{ord}_{p^2}(1+p)=p$$

- ① Use binomial expansion, $(1+p)^p \equiv 1 \pmod{p^2}$.
- ② $\operatorname{ord}_{p^2}(1+p) = p \text{ or } 1.$

Conjecture

If \mathbb{U}_p is cyclic, then \mathbb{U}_{p^2} is also cyclic.

Lemma

$$\operatorname{ord}_{p^2}(1+p)=p$$

- ① Use binomial expansion, $(1+p)^p \equiv 1 \pmod{p^2}$.
- ② $\operatorname{ord}_{p^2}(1+p) = p \text{ or } 1.$

Conjecture

If \mathbb{U}_p is cyclic, then \mathbb{U}_{p^2} is also cyclic.

Lemma

$$\operatorname{ord}_{p^2}(1+p)=p$$

- ① Use binomial expansion, $(1+p)^p \equiv 1 \pmod{p^2}$.
- ② $\operatorname{ord}_{p^2}(1+p) = p \text{ or } 1.$

- For the same reason, we have d either be p or (p-1)p.

- For the same reason, we have d either be p or (p-1)p.
- 2 If $d = (p-1)p \implies \text{Nice!}$

- **1** For the same reason, we have d either be p or (p-1)p.
- **1** If d = p 1, then we need another element that have order p(p 1).

- **1** For the same reason, we have d either be p or (p-1)p.
- 2 If $d = (p-1)p \implies \text{Nice!}$
- **3** If d = p 1, then we need another element that have order p(p 1).
- 4 Use the fact: if $\operatorname{ord}_m(a) = r$, $\operatorname{ord}_m(b) = s$, $\operatorname{gcd}(r,s) = 1 \implies \operatorname{ord}_m(ab) = rs$.

Since \mathbb{U}_{p^k} is cyclic, because p^k and $2p^k$ are similar. Instead of starting from scratch, we should definitely try to find if such a similarity between \mathbb{U}_{2p^k} and \mathbb{U}_{p^k} 's generators exists as well.

Let's start out by working a couple of numerical examples to give us some idea of some possible patterns or conjectures we can make.

$$\mathbb{U}_5 - 2, 3$$

 $\mathbb{U}_{10} - 3, 7$

$$\mathbb{U}_5 - 2,3 \quad \mathbb{U}_7 - 3,5 \\ \mathbb{U}_{10} - 3,7 \quad \mathbb{U}_{14} - 3,5$$

By now, we can notice a certain pattern. It seems that for all odd generators g of \mathbb{U}_{p^k} , g is also a generator in \mathbb{U}_{2p^k} . And for all even generators g of \mathbb{U}_{p^k} , $g+p^k$ is a generator in \mathbb{U}_{2p^k}

Let's try and prove that this pattern holds in general.

x - generator of \mathbb{U}_{2p^k} , need $\operatorname{ord}_{2p^k}(x) = \varphi(2p^k)$ and $x \in \mathbb{U}_{2p^k}$.

y - generator of \mathbb{U}_{p^k} , need $\operatorname{ord}_{p^k}(y) = \varphi(p^k)$ and $y \in \mathbb{U}_{p^k}$.

We're trying to find the generators of \mathbb{U}_{2p^k} from \mathbb{U}_{p^k} 's generators

Then can we relate $\varphi(p^k)$ and $\varphi(2p^k)$?

Since $\varphi(2)=1$, this gives us the idea of proving that φ is multiplicative which would allow us to derive that:

Since $\gcd(2,\,p^k)=1$ (because p^k is odd for odd primes p), then by the multiplicity of φ , $x^{\varphi(2p^k)}=x^{\varphi(2)\varphi(p^k)}$, and since $\varphi(2)=1$, we just need for $\operatorname{ord}_{2p^k}(x)=x^{\varphi(p^k)}$ in order to show x is a generator of \mathbb{U}_{2p^k} .

Claim

 φ is multiplicative, meaning for a,b with $\gcd(a,b)=1,\ \varphi(a)\varphi(b)=\varphi(ab)$

Proof: Recall that $\varphi(n)$ is the number of numbers a with $1 \le a \le n$ and $\gcd(a,n)=1$.

Relation between $\varphi(ab)$ and $\varphi(a)\varphi(b)$?

Let $a = p^n$, and $b = q^m$, p and q different primes.

Step 1: Take some u counted in $\varphi(p^n)$.

Step 2: Take some v counted in $\varphi(q^m)$.

Step 3:
$$gcd(p,q)=1 \implies gcd(p^n,q^m)=1$$

Step 4: p^n is coprime to q^m so use CRT

Step 5: Then
$$gcd(w,p^n)=1$$
, $gcd(w,q^m)=1$. Then clearly $gcd(w,p^nq^m)=1$.

We have shown for every pair of elements, one in $\varphi(p^n)$, and one in $\varphi(q^m)$, we always have an element in $\varphi(p^nq^m)$.

So
$$\varphi(p^nq^m) \ge \varphi(p^n)\varphi(q^m)$$
.

Can we do something similar to show $\varphi(p^n)\varphi(q^m) \geq \varphi(p^nq^m)$, the converse??

Step 1: Take some w counted by $\varphi(p^nq^m)$

Step 2:
$$gcd(w,p^nq^m)=1 \implies gcd(w,p^n)=1$$
, $gcd(w,q^m)=1$.

Step 3: Reducing $w \mod p^n$, and $\mod q^m$ we get:

Then for every w we have in $\varphi(p^nq^m)$ we can get a pair of elements, one in $\varphi(p^n)$ and the other in $\varphi(q^m)$.

So
$$\varphi(p^n)\varphi(q^m) \ge \varphi(p^nq^m)$$

We have shown that:

$$\varphi(p^nq^m) \ge \varphi(p^n)\varphi(q^m) \text{ and } \varphi(p^n)\varphi(q^m) \ge \varphi(p^nq^m) \\
\Longrightarrow \varphi(p^nq^m) = \varphi(p^n)\varphi(q^m).$$

Claim

If g is odd and is a generator of \mathbb{U}_{p^k} , then g is also a generator of \mathbb{U}_{2p^k}

Proof: First off, since g is a generator in \mathbb{U}_{p^k} , $\operatorname{ord}_{p^k}(g) = g^{\varphi(p^k)}$. Note that since g is odd, then $g \in \mathbb{U}_{2p^k}$.

By Euler's Totient Theorem, we know that $g^{\varphi(2p^k)} \equiv 1 \pmod{2p^k}$.

Since we showed $g^{\varphi(2p^k)} = g^{\varphi(p^k)}$, we get that $g^{\varphi(p^k)} \equiv 1 \pmod{2p^k}$.

And since g is a generator of \mathbb{U}_{p^k} , we also know that $g^{\varphi(p^k)} \equiv 1 \pmod{2p^k}$.

Let
$$\operatorname{ord}_{2p^k}(g) = y$$
.

We know $y \mid \varphi(p^k) \implies y \le \varphi(p^k)$. But we know that y cannot be less than $\varphi(p^k)$ as if we assume otherwise:

So y cannot be less than $\varphi(p^k)$.

Then using the fact that $y \leq \varphi(p^k)$ combined with the fact that y cannot be less than $\varphi(p^k)$, gives us that $y = \operatorname{ord}_{2p^k}(g) = \varphi(p^k)$. So we have proven our claim.

Claim

If g is even and is a generator of \mathbb{U}_{p^k} , then $g+p^k$ is a generator of \mathbb{U}_{2p^k} .

Proof: First, note that for an even g, $g + p^k \in \mathbb{U}_{2p^k}$. Since p^k is odd so $g + p^k$ is odd, $2 \nmid g + p^k$. Also, $p \nmid g$ so $p \nmid g + p^k$ so $gcd(g + p^k, 2p^k) = 1$.

Also, since g is a generator in \mathbb{U}_{p^k} , we know $\operatorname{ord}_{p^k}(g) = g^{\varphi(p^k)}$.

Step 1: Euler's Totient Theorem

Step $2: \operatorname{ord}_{2p^k}(g+p^k) \mid \varphi(p^k)$.

Which implies that $\operatorname{ord}_{2p^k}(g+p^k) \leq \varphi(p^k)$.

But, we know that $\operatorname{ord}_{2p^k}(g+p^k)$ cannot be less than $\varphi(p^k)$, as if we assume otherwise $(\operatorname{ord}_{2p^k}(g+p^k)<\varphi(p^k))$:

Letting $\operatorname{ord}_{2p^k}(g+p^k)=z$:

But this since $z < \varphi(p^k)$, this a contradiction to $\operatorname{ord}_{p^k}(g) = g^{\varphi(p^k)}$.

Then once again using the fact that $z \leq \varphi(p^k)$ combined with the fact that z cannot be less than $\varphi(p^k)$, gives us that $z = \operatorname{ord}_{2p^k}(g+p^k) = \varphi(p^k)$. So we have proven our claim.

Therefore we have shown that for all generators in \mathbb{U}_{p^k} , we can construct a generator in \mathbb{U}_{2p^k} . So since \mathbb{U}_{p^k} is cyclic, so is \mathbb{U}_{2p^k} .